Biomarker Selection System, Employing an Iterative Peak Selection Method, for Identifying Biomarkers Related to Prostate Cancer
نویسندگان
چکیده
A biomarker selection system is proposed for identifying biomarkers related to prostate cancer. MS-spectra were obtained from the National Cancer Institute Clinical Proteomics Database. The system comprised two stages, a preprocessing stage, which is a sequence of MS-processing steps consisting of MSspectrum smoothing, novel iterative peak selection, peak alignment, and a classification stage employing the PNN classifier. The proposed iterative peak selection method was based on first applying local thresholding, for determining the MS-spectrum noise level, and second applying an iterative global threshold estimation algorithm, for selecting peaks at different intensity ranges. At each global threshold, an optimum sub-set of these peaks was used to design the PNN classifier for highest performance, in discriminating normal cases from cases with prostate cancer, and thus indicate the best m/z values. Among these values, the information rich biomarkers 1160.8, 2082.2, 3595.9, 4275.3, 5817.3, 7653.2, that have been associated with the prostate gland, are proposed for further investigation.
منابع مشابه
Biomarker Selection, Employing an Iterative Peak Selection Method, and Prostate Spectra Characterization for Identifying Biomarkers Related to Prostate Cancer
A proteomic analysis system (PAS) for prostate Mass Spectrometry (MS) spectra is proposed for differentiating normal from abnormal and benign from malignant cases and for identifying biomarkers related to prostate cancer. PAS comprised two stages, 1/a pre-processing stage, consisting of MS-spectrum smoothing, normalization, iterative peak selection, and peak alignment, and 2/a classification st...
متن کاملClassification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest
Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...
متن کاملIterative Approach for Automatic Beam Angle Selection in Intensity Modulated Radiation Therapy Planning
Introduction: Beam-angle optimization (BAO) is a computationally intensive problem for a number of reasons. First, the search space of the solutions is huge, requiring enumeration of all possible beam orientation combinations. For example, when choosing 4 angles out of 36 candidate beam angles, C36 = 58905 possible combinations exist. Second, any change in a beam 4 config...
متن کاملA new rule-based algorithm for identifying metabolic markers in prostate cancer using tandem mass spectrometry
MOTIVATION Prostate cancer is the most prevalent tumor in males and its incidence is expected to increase as the population ages. Prostate cancer is treatable by excision if detected at an early enough stage. The challenges of early diagnosis require the discovery of novel biomarkers and tools for prostate cancer management. RESULTS We developed a novel feature selection algorithm termed as a...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007